AMSE JOURNALS —2015-Series: Advances A; Vol. 52; N°1 ; pp 31-47
Submitted Sept. 2014, Revised March 16, 2015; Accepted April 25, 2015

The Results of Computing the Special Determinant

Liang. J"

1. Depart of Fundamental Science,Gungdong University of Science & Technology
Xihul Road, Guangdong P.R.China 523083
(E-mail: Liangjp@126.com )
2. Institute of Applied Mathematics, Guangdong University of Technology,
Huan shi domg Road, Guang Zhou, P.R China 510075

Abstract. In this paper the special determinants have been computed, which are the

determinants of order 3n, and consist of 0,1,2 order differentials. The detailed is that:

elements of roads from 1 to n in the determinants are the 0 order differentials of

xl.j (i,j =0,1,2...n).The elements of roads from n+1 to 2n in the determinants are the 1
order differentials of x,’(i, j = 0,1,2...n). The elements of roads from 2n+1 to 3n in the

determinants are the 2 order differentials of x’(i, = 0,1,2..n).In the corresponding

confections matrix of the equations of 3 order .the special determinants are used to
determinant the uniqueness of the roots for the equations of 3 order .Without the
computations of the special determinants, the solution for the equations of 3n order will

become very difficult.
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1 Introduction

The computation of special determinants has been used to simplify the addition for sever
fractions in papers [1-8]. . They are the computation of high order determinants and

their elements are consist of 0,1,2 order differentials whose elements of roads from 1 to

nt+l in the determinants are the O order differentials of x,(i=0,2,...,n.).and the

elements of roads from n+2 to 2n+2 in the determinants are the 1 order differentials of

x,(i =0,1,2...).,and the elements of roads from 2n+3 to 3n+3 in the determinants are the
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2 order differentials of x,(i =0,1,2,...,n.) .Because of the high order ,to compute them

are difficulty. But they have been reduced to the sum of several determinants ,which are

lower-order. The several determinants of lower- order are easy to be computed .These

results can be applied in interpolation method,Following is the results:

Lemma 1.1

D(n +4), ,, =<—1>3"“2]j (x,-x) DG+, (L)

Where D(3n+4),,,,1s the cofactor of following determinants

01 x, x;
1 1 x xl2
11 x, x
11 x X’
00 1 2x
00 1 2x
D(3n+4) =
00 1 2x
'
0 0 O 2—
0!
'
0 0 0 2—
0!
'
0 0 0 2—
0!

3
X%

3n+2
JCO

3n+2
X

3n+2
X

n

3n+2
X

Bn+2)x)""!

Bn+2)x"!

Br+2)x)"!
3n+2)!
( n+ ) Jf3n

3n! 0 (12)

dispelled the entries of n+2-th row. 1st column in determinant D(3n+4)and

D(3n+1),41,1 1s the cofactor deleted the entries of the n+1-th raw. 1st column

in the following determinant D(3n+1):
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2 -1
11 x x xf xf"

[

11 x, x x5 . x"!
11 x, x x . Xt
11 x x x . x*!
0 0 1 2x, 3x .. GBu-Dx"?
0 0 1 2x, 3x .. QBu-Dx)?
DGBn+1)= .
0 0 1 2x, 3x2 .. Q@u-1x"?
2! ! -1!
00 o 2 3. GrDls,
o! 1! (Bn-3)!
! ! -1
o0 o 2 3., Gr=Dl,
0! 1! (Bn-3)!
! ! N
00 o 2 3 Gn-1)! .,

YR TR e T I T
(1.3)

Proof. According to definition of algebra cofactor, D(3n+4) is

n+2+1,1

2 3 3n+2
S A A X,

2 3 3n+2
X, X X, e X,

2 3 3n+2
X, X, X, . X,

1 2x, 3x; .. Bu+2)x;""
1 2x, 3x; .. Gn+2)x,"!

D@3n+4),,,,, =(-1)"*

0 1 2x, 3x .. (Bn+2)x)"™!
2! ! 2)!

0o o = 3—x0 ngn
0! 1! 3n!
2! ! 2)!

0o 0o = 3—x1 fo"
o! 1! 3n!

! ! !
203t @Gued! L (g
Y TR 3n) "

Beginning the last column in form (2.3) add -x, times the k-1-th column to the k-th
column (k=3n+2,3n+1,3n,...2,1) .The result is:
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Where:

S O O = =

Expand the determinant along rows 1 and then extract out the common factor

fromrowsiin D(3n+3),,, (i=1,2,...,n), So above determinant becomes :

Where

D3@n+4),,,, = (-1 4=(-1)""A.

0 0 0
2 3 2
X =X X =X Xy X =X X
2 2
X, =X Xy =Xy X, Xy =X %,
2 3 2
‘xn—l - xO ‘xn—l - xn l‘xO xn—l - xn—le
2
X, — X X, — XX, X, —X,X,
2
1 2x, = X, 3x, —2x,x,
2
1 2x, = x, 3x; = 2x,x,
2
1 2x, = x, 3x; =2x,x,
2
1 2x, - x, 3x, - 2x,x,
2! 3! 2!
0 — — X, ——X,
0! 1! 0!
2! 3! 2!
0 — —X, ——X,
0! 1! 0!
2! 3! 2!
O Ny Ty ‘xn - xO
0! 1! 0!

B

4- (—l)l“ﬁ(x,. ~x,)B

is following determinants :
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o e e o S o o o R e e e

(1.5)
0
x13n+2 _ xlfsn+1x0
3n+2 3n+l1
x2n+ _ x2n+ X,
e
xr3’n+2 _xr31n+1xO
(GBn+2)x,"" =(Bn+1)x
Bn+2)x"" =(Bn+1)x
(Gn+2)x"" —=(Bn+1)x

3n
o %o
3n
1 %o

3n
2 Xo

Gn+2)x."" —=Bn+1)x)"x,

(Bn+2)! o Gn+)! 5,

X,
3n! Gn-D1"
(Bn+1)! ot (Bn+1)! o

3n! (Bn-1)!
(3n+1)! ot 3n! o
3n! (3n-1)!

(1.7)

0

0

0

X.

1

(1.6)



1 X, x; X"
1 X, x5 L o
1 X, x5 L 0!
L
L
Lo, X, oL x
1 X, X L X!
1 X, x; L x)"!
1 2x-x, 3x-2xx, L  (Bn+2)x"™" -@Bn+1)x)"x,
| 1 2%-x 3% -2xx, L (GBn+2)x"" -@n+1)x)"x, (1.8).
L
1 2x,-x, 3x-2xx, L (Bn+2)x""'-CBn+Dx"x,
! ! ! ! !
o 2 32 Gredla, Grebla
0! 0! 0! 3n! (Bn-1)!
! ! ! ! 1!
o 2 B2 Gredl, Grebl
0! 1! 0! 3n! (Bn-1)!
L
L
! ! ! | |
0 2! an _ &xo L (Bn+2)! o Bn+1)! ey
0! 1! 0! 3n! (Bn-1)!

In form (1.8), line n+1+i (i=12,..,n.) elements minus theline i (i=1,2,...,n.)

elements ,and exact out the common factors ,

determinants (1.8) became :

B =]j(x,, ~x,)C (1.9)
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I x x;
I ox,, xj—z
1 x, xf
I x, x;
0 1 2x,
0 1 2x,
C=2
0 1 2x,
0 1 2x,
! ! !
0 2— 3— X - 2— X,
or 1 0!
! | |
0 2— ixn - &xo
or 1 0!

Xo
3x;
3x;
3x
3x;
4! , 3!
2_!x1 _ﬁxlxo
4! , 3l
2—!)6,1—1—!)611)60

3n+l

X

3n+l

X

n
3n+1
n

3n+l

Xo
(Bn+ l)xf"
(Bn+ l)xg"

Gn+1)x"

3n-1
3nx,

GBn+D! 5,
Gn-1)"

3n!

(Bn+1)! 2 30!

X
Gn-11""

-—— X,
Gn=-2)t""

_________'Xh Xb
(3n-2)!

3n-3

3n-1

(1.10)

The elements in rows 2n+2+i (i=1,2,...n) minus two times of the elements in n+2+i

(i=1,2,...n) rows ,and then exact out the common factor

C=41@-%)
3 0

o O f— f— o

2!
0!

3
X

3!
X
-
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3n-1

X
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See form (1.6), (1.7), (1.8), (1.9), (1.10), (1.11) following can be obtained:

1 x x X x)"
Uox,, x, X, X,
1 x x x x)"
1 x, x x x)"
0 1 2x 3x 3nx"!
0 1 2x, 3x; 3nx)"!
A= 2H (i =x)0 1 2x 3% 3!
0 o 2 3. 3nl_ o
or 1°° Gn-2)!"
O 0 2 g 3”! x3n—2
o 1 Gn-2)!""
0 0 2! 3—!x s x"!
ol 1 (Bn-2)!""

(1.12)

Repeat to the method obtained form (1.12), from form (1.4).In determinants of form

(1.11) ,the elements in rows n+1,and rows 2n+1, are deleted ,that result is

A= (-1)3"””211][()9 -x,)’D (1.13)

- (—1)“2ﬁ (3, =%, (=1 D (1.14)

Where D is
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1 x x X X"
1 x, x x 0"
N AR I x!
1 x x x . X"
0 1 2x 3x .. Gu-Dx"?
0 1 2x, 3¢ .. (Gn-hHx"°
D=lo 1 2x, 3x .. Gu-Dx"° (1.15)
! ! -1
0 0 2! ix1 G3n-1)! x"
o' 1 (3n-3)!
oo 2B, e
o 1 Gn-4)1""
131 N
0 0 2t 3 X, . Gn=2)! X"
or 1 (Bn-4)!

According the definition of algebra cofactor (1) D = DG3n + D,

Therefore forms (1.13)and (1.5) can be rewritten to be

A=(-1" 2]_‘[ (x; - xO)gDrHl,l. (1.16)
And =

D@Bn+4),,,,=(- 1)3n+11—[(x] — Xy )’ D(3n + D,
(1.17)

Successively apply above method, the order of D(3n+1),:1; can be reduced, and then

following lemma 1.2 can be obtained.
Lemma 1.2

! 2450+
DE+),,, =D 22 T (-, (1.18)

nzi>j=z0
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where D(3n+4),., is the algebra cofactor dispelled the entries of n+2-th row. Ist
column in determinant D(3n+4) in form (1.2)
Proof: According to lemma 1.1,the algebra cofactor is D@Bn+l),,,

following form :

1 x X x . x"!
1 x, x x . "
1 ‘xn—l x:—l xn3=1 xzfl_l
1 x x x . !
0 1 2x 3x .. Gu-Dx"°
0 1 2x, 3¢ .. (Gu-Hx’
DGn+1),,,=(-D""o 1 2x 3x .. Gn-Dx (1.19)
131 -N!
0 o0 2t 3 X, e Gn-Dt X"
or 1 (3n-3)!
13! -2)!
0 o0 2! ix2 Bn-2)! "
or 1 (B3n-4)!
Y -2)!
0 0 2! ixn Gn=2)! "
0! 1 (Bn-4)!

In form (1.5),the order of determinants is 3z, in which the elements contain x,

have been dispelled ,by apply above method.Similarly, the elements contain

x,(i=1,2,...,n—-1.)have been dispelled ,the determonant of order3n can be reduced

to be order 3. This results is :

l(3,,2-311—4) 1 1 X xj
DGn+4),, =)D T [T -x’o 12y,
n=i>j=0 . O O 2
0!
| n
—(3n"+5n+6)
= (-1)2 2+ (x,—x,).
nz:zL_}[zO ’
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Lemma 1.3

DBn+4),,5., = (- )" 2(x - x0)3(xk - x0)6 (x; = xo)g[D(3n +1)

ek (1.20)

n+l+k,l

3!

Xy =X

D(3n + 1)2n+1+k,1 ]

Lemma 1.4

D@Bn+4),,,=(- D™ 12(x = x0)* (3, =x,)° [ [ =%’ [DGn + Dy

i=
i=k

2g3!
D@n+1),, ., + L)ZD(M + 1)1 ]- (1.21)

Xe =X Xe =%
Lemma 1.5

D@Bn+4),,,.000 = (D" 2(x - x))’ (x, - x,)° ] (x=x,)’D@Bn+1),,,.,,- (1.22)

i=

i=k

2.1 Main results
Following theorems are the main results of this paper:
Theorem 2.1

D(@3n + 4)211+4+k,1

=-1 (n+1), 2.1
DGn+4),.,, (41 21

where D(3n+4),,,4,.,~ DBn+4),,,, are the cofactors of D(3n+4) in form (1.2)

and [ (n+1) is following form :

z,';(n+1)=%(x-xk)2 ] (%)3 (2.2)
i= kTN
i=k
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Proof . At first, form (2.1) can be verified as n=2, 3, and then, it is supposed to be
correct as n:

D(3n + 1)211+1+k,1

TP I’ (n). (2.3)

n+l,1

where D(3n+1),,,,,,,~ DBn+1),,,, arethe cofactors of D(3n+1) in form(1.3) and

l,i<n>=§(x—xk>2 Ty (2.4)
= xk _xl-
i=k

To prove it is correct as ntl, let D(3n+4),,,,,,, be divided by D(3n+4)n2,1 and

notice form (1.4) (1.7), we have:

(- 1)3n+5 2(x- xo)3 (x, —x, )6 (x, = x, )9 D@Bn+1),,,1.0.
DBn+4),,.4.0, _ ik

D@3n+ 4)n+2,1

n+l.1

=1 2] [, —x,)° DG +1)

-
X=Xy 3 DGn+1),,.1.,

B (xk -x, D@Bn+l)

(2.5)

n+ll

The right hand is replaced by form (2.3), and notice form (2.4), and (2.2), following

form holds:
D@n+4),,, 4001 - X=X YL (n)
D@Bn+4),,,, X = Xo
X=X 1 ioX-x
=-(— -5 [—D)]
X, —-x, 2 Lt X, — X,
i=k
- [ [ = ),
2 Ly X, — X,
i=k
That theorem is correct. |
See above the first, fourth equations we have:
(2 L) =L+, (2.5)
X =%
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Theorem 2.2

D(@3n+ 4)n+3+k,l

= —l' 1 2'6
DGned),,, 0D (2.6)

where D(3n+4)y:31k1~ D(3nt4),21 are the cofactor of D(3n+4) in form (1.2), and

I, (n+1) is following form ;

1) = ()1 3= 3) 3 —— ) ) 2.7)

i
i=k izk

Proof . The proof is as same as that of theorem2.1, however, there is some

difference in ease of n+1. Now suppose it be correct as case of n:

D@Bn+1),,1.44

_ 2,
DGn+1) Fi(m), (2.8)

n+l.1

where D(3n +1) + D@Bn+1),,,, are the cofactors of D(3n+1) in form(2.3), and

n+l+k.1

[, (n) is following form:

1,00 = (=)l 30-5) S [ (2.9)

i=k i=k '
and then form (1.4). (1.5) are noticed, we have:

D(3n+4) xX—-x, 3, DBn+1) 31 DBn+1)y,,1.0

n+3+k.1 =( n+l+kl ]
D@Bn+4),,,, =%, D@n+l),,,, x.-x, D@n+l),,,
(2.10)
The right hand is replaced by form (2.7). (2.3) ,and (2.9),(2.4),and then following form
holds:
D(3N+4)n++ X=X ' 3! "
M= () () + L(n)] (2.11)
D@Bn+4),,,, Xe =X Xe =%
D3N +4 - 2 - L -X
e N I ) ey R | (o}
D@n+4),,,, X = Xo =X =X Xe =X =7 X =X
i=k i=k
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=—(x—x)[1+3(x-x,) ! +3(x %) ]]_0[
=X =X =X i~ xk_xo

i=k

=_(x_xk)[1+3(x_xk) ] ( )3
i= Xi Xk = Xk - XO
i=k i=k

=l (n+1). (2.12)

So form (2.6) is correct.|

By the way, following form can be obtained, see form (2.11) and (2.12)

(2017 () - ()] =1 (n+1). (2.13)
X =X X =X
Theorem 2.3
D@Bn+4),,,, _
—D(3”+4)n+2_1 =-/[,(n+1), (2.14)

where D(3n+4)11x1+ D(3nt+4),42 is the cofactor of D(3n+1) in form (1.3) and

[, (n+1)is following form :

[,(n+1)=[1+3(x-x,) +2B(x-x,)’ ;
=0 X; — X i= ( )
i=k i=k
5 n-1 1 n 1 n X=X, 4
+38(x - x,) D ]]‘0[( ) (2.15).
00X =X Xy =X o X T X
i=k ’ i=k

Proof . It is easy to verified in cases n=2. 3, and supposed to be correct as case n,

namely

D@Bn+1),,

DGnal) =1 (n), (2.16)

n+l.1

where D(3n+1)x; and D(3n+1),.;; are the cofactors of D(3n+1) in form (1.3), and

[, (n)) is given by
lk(n)=[1+3<x—xk)§x_ +2:3(x—x) ﬁ
;::k ! l==k k (2.17)
n—1 1 n 1
+3-3(x— xk) E ] ( )3’

Consider (1.4) and (1.6), we have:
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D@Bn+4),,., ( x-x, | DBn+l),, 3 DBn+1),,1,4,
D@3n+4),.,, x -x, |DGn+ l)nm X, —x, D@Bn+1),,,
N 2-3! DQ@Gn+ 1)2n+l+k,1
(X, =%)" DBn+l),,, (2.18)

In the right hand, the 1st, 2nd and 3rd items are replaced by form (2.16). (2.8). and (2.3)
respectively, and notice (2.17),(2.9),(2.2), following form holds:

X=X, 3 . 2-31
=—( > )3[lk (n)-——L(n)+ —x)zlk (n)]

X =X X =X (x, =X,

D@Bn+4),,,,
D(Bn+4)

n+2.1

1

X, — X,

- 3 S L 8- 3
Xk—xo i= Xl—.xk i=
i=k i=j

)2

n 1 n 1 n X=X
+38(x - xo)z( E )]H( Ly
XX S X e XX,

i
i=k i=k

n 1 n X=X
(= xp)[1+3(x = x;) ] :
xk _XO = X[ —xk i x—.xk
i=k ik

)3

2L ) XN (2.19)
(x—x,) 2 X =X,

X-x, » o .
Extract out the common factor | | ( L) , which is on the outside of a square bracket

and merge each item, which is on the inside of a square bracket by using following

method :

u 1 3 u 1
3(x-x,) - (x-x,)=3(x-x,) s

PP e T o WANLINE NI - L Gt VAP YOSV VLI
= X, —X (xk_xo) 2 =0 X~ X

i=k i=k
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38-x)’ S ——3 L) gy

=X =X X T X X=X =X =X
i=k i=k
n-1 1 n 1 1 n 1
— 2
=3B(x-x,)°( +
i= Xi _.xk j=i+1 xj _.xk XO —Xk i=1 Xi _.xk
i=k i=k

n-1 1 n 1

=38 (x- ) 3 —.
i= X Xk J=i+l x xk
i=k Jj=k

That results in:

D(3n+4)l+K.1 = _( x_xo )3[1+3(x_xk)

n
+2-3(x-x,)" ) (
D@Bn+4),.,,, X =% =0 X; =X =0 X T X
ik izk

n 1 n 1 X=X,
+3:3(x=x,)" () ( )2( ) ( ) ]
=0 X, — X = x =Xy Tl X X
i=k Jj=k i=k

=—[1+3(x-x,) \ ( )+2 3(x-x.)° (

i= i = X k
i=k i=k

) (2.20)

a 1 4 1 X=X,
2
+3:3(x=x.)" > ( ) ] ( Ly’
& X -x, AhX, -x, X -,
i=k Jj=k i=k

=1 (n+1).

where [ (n+1) is from (2.15). It means form (2.14) is correct in case n+1.|

See the Ist equation of form (2.19) and 3rd equations, of form (2.20) , following

equation can be obtained:

75y () - —2 z(n) ( )z(n) =L (n+1). (2.21)

X =X Xy — X =X

Conclusion

The main results of this paper are the theorems 2.1, 2.2, 2.3. They are the computation
of high order determinants and their elements consist of 0,1,2 order differentials whose

elements of roads from 1 to n+1 in the determinants are the 0 order differentials of
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x,(i=0,1,2...) .and the elements of roads from n+2 to 2n+2 in the determinants are the 1
order differentials of x,(i =0,1,2...),and the elements of roads from 2n+3 to 3n+3 in the

determinants are the 2 order differentials of x,(i =0,1,2...) .Because of the high order ,to

compute them are difficulty. But the have been reduced to the sum of several

determinants which are lower-order. The several determinants of low order are easy to be

computed .These results can be applied in interpolation method'*!, which is important

tool in modeling and simulation .For example the design the out line of air plane ,bigger
ship and satellite need interpolation But the solution of the problem have not been seen
in papers [9-16]. The theorems 2.1 2.2 2.3 are the basic of solution for the problem.

Subject the limit of paper page , the more results will appear in our other papers.
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